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The effects of a free surface on the spin-up of a ho'mogeneous fluid are studied, both 
analytically and experimentally. The analysis is carried out in cylindrical geometry 
and shows that the spin-up process is strongly modified as the rotational Froude 
number F = 4Q2L2/gH becomes large. The dynamic effect of the free surface causes 
delayed response outside a sidewall boundary layer of thickness LF-;. The timescale 
in the slowly decaying core is larger than the usual spin-up time by a factor of order 
F .  A set of laboratory experiments using a cylinder with a parabolic bottom were 
carried out in order to test the theory. Reasonable agreement is found in all the 
experiments except close to the centre where an interesting deviation was observed, 
especially in cases corresponding to smaller Froude numbers. The deviation consisted 
of an anticyclonic vortex a t  the centre. It is shown that this phenomenon might be 
explained by Lagrangian mean motion resulting from inertial oscillations. In  fact, 
the analysis shows that this motion produces a singular vortex a t  the centre. 

1. Introduction 
Greenspan & Howard (1963) gave an extensive analysis of homogeneous spin-up 

in containers of arbitrary shape, and the reader is referred to this paper for a 
thorough discussion of spin-up dynamics. They showed, in particular, that  in right- 
circular geometry, the fluid, away from boundaries, spins up as a solid body, i.e. the 
zonal velocity is linearly dependent on the radial coordinate. We consider here the 
modification of this theory due to a free surface. 

A very brief discussion of this effect was in fact given by Greenspan & Howard in 
the above-cited paper. They did not present a detailed analysis of the problem, but 
merely stated the first-order correction for a small rotational Froude number. In  the 
flat-bottom case they found that, to this order, the fluid still spins up as a solid body. 
It is shown here that this result involves two counteractive effects: 

(i) the geometric effect, caused by the paraboloidal shape of the equilibrium 
surface. This part remains the same if the surface is covered by a rigid frictionless lid 
of the same shape and therefore cannot be considered a true free-surface effect ; 

(ii) the dynamic effect, caused by the flexibility of the surface. 
The first-order corrections from each of these two effects depart from solid 

rotation, but the deviations from solid rotation cancel out, leaving the simple result 
of Greenspan & Howard. Thus, in this particular geometry, the actual free-surface 
effect is not indicated by the first-order correction. In order to eliminate the 
geometric effect, which is of no interest in the present context, we use a paraboloidal 
bottom. I n  this way, we are able to keep uniform depth and avoid any restriction on 
the Froude number. The only depth variation is the one induced by the transition 
between the initial and final parabolas and this is assumed to  be small in a linear 
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theory. This choice of geometry is interesting also from the geophysical point' of view, 
since the oceans are basically thin fluid layers, parallel to the geopotential 
surface. 

Pedlosky (1967) considered the spin-up of a two-layer fluid in a flat-bottomed 
cylinder. This case offers an alternative way of eliminating the geometric effect, not 
discussed in his paper. In  fact, there is a formal analogy between the homogeneous 
and two-layer cases when the following limits are taken simultaneously : (i) inviscid 
upper layer ; (ii) infinite upper-layer thickness ; (iii) vanishing rotation rate ; and (iv) 
vanishing density jump. In  this case, the equations governing the lower layer are 
essentially the same as those used for the free-surface case. The formulation used here 
avoids the disturbing processes involved in the two-layer case and focuses directly on 
the free-surface effect in a way that is easily realized in the laboratory, Experimental 
studies of two-layer spin-up have been reported by Berman, Bradford & Lundgren 
(1978) and Linden & Van Heijst (1984). The former were concerned with the 
interfacial shape during both steady and step spin-up in a centrifuge. This theory 
includes a geometric effect and shows the same type of boundary-layer response as 
discussed here. Measurements were reported only of the central height of the 
interface however. The latter reference deals with the formation of a bare spot when 
the central depression of the interface reaches the bottom of the tank. Goller & 
Ranov (1968) studied spin-up from rest in a cylinder of a homogeneous layer with a 
free surface. This fully nonlinear case was solved by numerical methods and the 
results were compared with laboratory measurements of the surface elevation. 

A set of laboratory experiments, using a cylinder with paraboloidal bottom were 
carried out. Instead of monitoring the time development of the surface slope, as done 
in earlier spin-up experiments (for example Goller & Ranov 1968; Berman et al. 
1978), we found it  easier and more accurate to measure fluid displacement during the 
process. This was done for a range of Froude numbers and the results are presented 
in $4. Theory is essentially confirmed by experiments. I n  the central region, however, 
a rather unexpected deviation from theory occurred. The deviation is characterized 
by an anticyclonic vortex a t  the centre, growing in magnitude as the Froude number 
decreases. Section 5 is devoted to an investigation of this phenomenon. It is shown, 
by means of a simple analytical model, that the observed feature might be caused by 
Lagrangian mean motion from the set of inertial oscillations that are generated by 
the impulsive change of the rotation rate. 

2. Quasi-geostrophic theory 
I n  a cylindrical coordinate system ( r ,  8, z ) ,  rotating about the z-axis with angular 

frequency 0, the equations governing axisymmetrical flow away from viscous 
boundary layers are 

1 aP 
P ar 

du _ _  20v = --++zr, 

dv 
--+20u = 0, 
dt 

dt 

dw 1 p 
dt p a ~  !I> 

aw 
az 
-+Du = 0. 
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The following abbreviations are used throughout this paper 
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The fluid is confined within the region 

r < L,  

N ( r )  d z ,< N ( r )  +H + ~ ( r ,  t ) ,  

where N ( r )  = Q2r2/2g  denotes the shape of the equilibrium parabola, H is the initially 
constant depth and 7 ( r ,  t )  represents the transient distortion of the free surface. The 
pressure is consistently expressed by 

P = pg[H + N ( r )  - 21 + $(?, z ,  t ) .  

The motion is initiated by an impulsive change, AQ, of the rotation rate a t  t = 0, and 
the coordinate system is chosen such that the boundaries are at rest. The velocity 
scale is then given by U =&L, where E =  AQ/Q is the Rossby number. The 
equations are non-dimensionalized using the following scales : 

[u, u, w, $, 71 = U Ea, 1,6Ef, 2pQL, "1, c 9 

[ r ,  z ,  t ]  = [ L , H ,  E % ? - l ] .  

The scale of 7 is determined by the difference between the initial and final parabolas. 
E is the Ekman number, defined by E = v /QH2.  It is assumed that E < 1. 

In the limit e = 0, (2.1)-(2.4) take the non-dimensional form, correct to O(Ei), 

au 
at 
-+2u = 0, 

2 = 0, az 
aw 
aZ -+Du = 0. 

Thus the interior motion is geostrophic and hydrostatic to this order, implying 

au av - - - _  - - 0 ;  7 = $ .  
a2 az 

Conditions on the normal components of the interior velocity are imposed by 
divergent viscous boundary layers on the bottom and sidewalls. At the bottom, the 
vertical velocity induced by the Ekman layer is (Greenspan 1969) 

where a = Q2L/g measures the importance of centrifugal force relative to gravitation 
or the inclination of the equipotential surface. Large values of a introduce effects 
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outside the scope of the present analysis and we shall assume that a 4 1. With this 
assumption, the complete bottom condition becomes 

The linearized free-surface condition for the vertical velocity is given by 

(2.10) 

(2.11) 

where F = 4Q2L2/gH is the rotational Froude number. 

(2.11), yields 
Vertical integration of the continuity equation (2.8), using (2.5), (2.6), (2.10) and 

(2.12) 

The left-hand side of this equation represents the effect of the free surface, and the 
Froude number is a measure of its magnitude. On the right-hand side are the 
divergencies of the Ekman and interior fluxes respectively. Equation (2.12) is to be 
solved subject to the initial condition 

$ = --I(r2-1) 2 2 a t  t = 0. (2.13) 

The appropriate condition a t  r = 1 is obtained from the requirement of zero net flux 
through the sidewall : 

(2.14) 

At this point we can confirm the statement made in § 1 concerning the first-order 
correction to the constant-depth case from the two effects of a free surface. To 
include the variation of depth in the flat-bottom case, we have only to multiply the 
interior mass flux term in (2.12) by the total depth, yielding 

with ( l + + F ( r 2 - l ) ) - - + -  a a$ = 0 a t  r = 1.  
ar at ar 

If we assume that F 4 1 and introduce the asymptotic expansion 

- _  a ~ - v = v o + F v l +  . . . ,  
ar 

it is found that 

and 

vo = r (1  -e-$) 

v1 = Art e-t, 

which is identical with the result obtained by Greenspan & Howard. On the other 
hand, if we go through the same procedure with (2.12)-(2:14), we find that 

211 = e-t 

which is not linear in r .  
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FIGURE 1. Plots of the free-surface shape for three stages of spin-up. Computations are made 
from (3.2) with F = 100. 

r 

3. Solution and discussion 
The boundary condition (2.14) may be integrated over time yielding 

Thus, close to the wall, the decay time is 0(1), which is the usual spin-up timescale 
obtained with F = 0. Inspection of (2.12) shows that for large F ,  this timescale is 
characteristic only in a sidewall boundary layer of thickness F-i, where all three 
terms of (2.12) are of equal importance. In  the main part of the fluid, the timescale 
is O(F) ,  and here the last term of (2.12) is O(F-l), while the other two are O(1), 
leaving essentially a diffusion equation for the pressure. In other words, there are two 
very different processes involved when F 9 1,  one rapid in the boundary layer and 
one slow ‘diffusive’ outside it. 

The complete solution of (2.12)-(2.14) is obtained by separation of variables and 
Fourier-Bessel expansion : 

where pk  is the kth zero of J J l ( r )  and 

Some results computed from (3.2) with F = 100 are displayed in figures 1 and 2. In  
figure 1,  the surface elevation a t  a few stages of spin-up is plotted relative to the 
initial state. It is seen that the early response is confined to a region close to the 
sidewall. Figure 2 is a simple plot of the decay time versus radial position. Both 
figures confirm the above discussion. 

In view of these results, the spin-up process may be described in the following way. 
Shortly after the start ( t  - Ei) ,  the boundary-layer circulation is fully developed and 
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FIGURE 2. Plot of the e-folding time versus radius, computed from (3.2) with F = 100. 

the radial flow delivered by the thin Stewartson layer acts as a barotropic signal that, 
within a few revolutions, penetrates (with the speed of a long wave) a distance of 
the order F-1 into the fluid, where i t  is blocked by rotation. Outside this region (the 
Rossby radius) there is no radial flow in the early stage and the surface simply 
descends at the Ekman suction rate. The fluid within the layer is zonally accelerated 
and a velocity gradient is produced in such a way that the vertical Ekman flux 
changes sign somewhere close to  the wall. This point of zero Ekman-layer divergence 
separates the central region where fluid is withdrawn by Ekman suction from the 
outer region where it is redelivered. At t - 1 ,  the width of the outer region is of 
the order of the external Rossby radius of deformation, growing slowly to cover the 
whole volume a t  t - F .  The slow phase is mathematically a diffusion process with a 
diffusion coefficient equal to F-l (dimensionally L2QF-l). Thus free-surface spin-up 
a t  large Froude number requires a longer time and consequently more energy. The 
excess energy is used to build up the potential energy, stored in the final 
parabola. 

4. Experiments 
A set of experiments in a cylinder with a paraboloidal bottom were carried out, in 

order to confirm the predicted dependence on F .  There is a small problem in 
designing experiments with large external Froude numbers if, in addition, the 
parameters a = Q2L/g is to be kept small. The radius of the cylinder used in the 
experiments was 14.5 cm and the rotation rate was 3.718 rad/s. This gives 0.2 €or a,  
which should allow the curvature to be safely ignored in (2.9). The maximum value, 
23.7, of F was obtained with a very thin fluid layer (5 mm). This case represents the 
limit considered in the theory and is the one showing the closest agreement. The ratio 
of the widest Stewartson layer to the Rossby radius is of the order SEiFi, which is 
small in all cases. Parameter values for five experiments are given in table 1. These 
experiments were repeated several times with no significant difference in results. 

The angular displacement of fluid during the process was measured by 
photographic registration of an initially radial dye streak (figure 3) .  For simplicity, 
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exp HfL ex102 E x t 0 4  F 

I 0.034 3.67 108.0 23.7 
I1 0.069 3.40 27.0 11.8 
I11 0.138 3.40 6.7 5.9 
IV 0.207 3.40 3.0 4.0 
V 0.276 3.40 1.7 3.0 

TABLE 1. Parameter values for the experiments 

FIGURE 3. Photograph showing the appearance of the dye streak in experiment IV (F  = 4.0), 
taken at t = 180 s. Note the developing central vortex. 

1 Experiment I 

0 

FIGURE 4. Experimental results, presented as total angular displacement versus radius. The data 
(originally in radians) have been scaled by the factor EE-f and divided by (4.1). Thus, the 
theoretical prediction coincides with the r-axis. 
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we consider only the final position of the dye, i.e. the total angular displacement. 
This quantity is not only easy to measure accurately, but also the theoretical 
prediction for it can be put into a simple analytical form : 

Integration of (2.12), using (2.13)-(2.14) yields 

8=:F(r2--1)-1, (4.1) 

This formula shows once again that the timescale varies from 1 at the sidewall to  P 
in the centre. Multiplying (4.1) with the scale factor E E - ~  gives the actual angular 
displacement in radians. The experimental results are shown in figure 4, properly 
scaled and divided by the theoretical expression (4.1). The plots in figure 4 show the 
general agreement with theory, a t  least in the region away from the centre and the 
rim. They also show that a central anticyclonic vortex, growing in magnitude and 
radius with the aspect ratio, develops. Note that (4.1) also predicts an anticyclonic 
motion, increasing towards the centre. Thus the observed deviation acts to amplify 
the curly shape of the dye streak (see figure 3).  

5. Inertial oscillations 
Initial-value problems in contained rotating flow always involve the generation of 

inertial oscillations. These oscillations play an important role in the early stage of the 
interior response. Quasi-geostrophic theory alone cannot support arbitrary initial 
conditions. In  addition to the geostrophic flow, there are two contributions, generally 
not considered in problems like this. One of these is associated with components of 
the forcing, having timescales of the order 1/Q. The other consists of an infinite 
set of inertial oscillations generated by the discontinuity inherent in the initial 
condition. Such discontinuities always occur when the fluid is subject to sudden 
changes in the external forcing, like the impulsive change of the rotation rate in the 
spin-up problem. The imposed initial condition is satisfied by the sum of the three 
flow components. Unlike the geostrophic and transient components, the inertial 
oscillations are independent of the forcing except a t  the discontinuity and thus 
merely constitute a superimposed decaying motion that eventually disappears. 

The general properties of contained inertial oscillations have been studied by many 
authors and numerous reports have been published. For a comprehensive account, 
see Greenspan (1969). The objective here is solely to demonstrate that inertial 
oscillations can produce phenomena qualitatively similar to  the disturbances 
reported in 9 3. A complete analysis of the initial-value problem including inertial 
oscillations would be extremely complicated and therefore we shall use a simple 
model to simulate the generation of oscillations that take place in the spin-up 
problem. The results from this model show that inertial oscillations give rise to 
Lagrangian mean motion. I n  particular, a singular vortex is produced a t  the centre. 
This spiral motion is the most spectacular feature found in the experiments. With 
decreasing aspect ratio, H / L ,  the mean circulation from oscillations gets confined to 
narrowing regions at the centre and rim. This could explain why experiments 
corresponding to  small aspect ratios show little or no deviation from quasi- 
geostrophic theory. 

I n  order to simulate the generation of inertial oscillations in the simplest possible 
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way, yet relevant to the present problem, we shall use cylindrical geometry with a 
flat top and bottom. We have thereby assumed that the paraboloidal shape, used in 
the previous sections, is not the primary cause of the phenomenon we are looking for. 
In quasi-geostrophic theory, variations of the rotation rate are transmitted to the 
interior via Ekman layers a t  the horizontal surfaces. The effect on the interior is a 
horizontally homogeneous vertical flux with return flow in the corner region. The 
strength of the flux is determined by the velocity difference between the geostrophic 
flow and the horizontal boundary. In the present model, we shall simply impose an 
artificial Ekman flux with given time-dependent amplitude and solve the following 
linearized inviscid problem : 

av 
-++Qu = 0, 
at 

with boundary conditions 

w = F ( t )  wo; 2 = 0, 

x = H ,  w = G(t)w,; 

u = 0 ;  r = 0, L,  

u , v , w  = 0 ;  t < 0. 

The system is non-dimensionalized according to (S = H / L )  

[u, v, w,  $1 = W,[S-l,S-l, 1,2pLQS-1], 

and thus takes the form 

[Y, 2, t ]  = L,  H ,  - [ 4 

av 
-+u = 0, 
at 

We introduce a meridional stream function li/ according to 

(5.4) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 
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Elimination of v and c) gives the following problem for the stream function : 

with boundary and initial conditions 

$ = 0 ;  r = 0 , 1 ,  

$ = -1 z rF( t ) ;  x = 0, 

$ = -1 ,rG(t); z = 1, 

$ = 0 ;  t 6 0. 

Taking the Laplace transform of (5.14) yields 

with 

The transformed stream function is expanded in a Fourier-Bessel series : 

m 

$ = Bk(z ) J l (pk  r ) .  
k-1 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

Insertion of (5.17) into (5.15) gives the following equation for the Fourier-Bessel 
coefficients : 

where 

The solution of (5.18) using (5.16) is 

where 

d(s)  sinhSkz+@(s) sinh%,(l--z) 
sinh .Ye, 

a", ( 2 )  = -46, , 

(5.18) 

(5.19) 

(5.20) 

The analysis so far applies to arbitrary time dependence of the forcing. The functions 
G and F should be chosen to model the spin-up Ekman layer as closely as possible. 
This is conveniently done by taking the Laplace transformed solution of the classical 
time-dependent Ekman-layer problem on a rotating disk (Greenspan 1969). With a 
free surface, G and F are then given by 

- - i  
G 0;  F = -[(s+i)-;-(s-i)-f], (5.21) 

5 
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yielding for 8, 
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(5.22) 

The inversion of &,(x) is a standard procedure involving the calculation of residues. 
From the structure of (5.22) it  is seen that there are three contributions to the 
solution. These are 

(i) The geostrophic part, corresponding to the simple pole a t  s = 0. 

-g, 2/2(1-z). (5.23) 

(ii) The transient part, corresponding to the branch points a t  s = f i .  

(5.24) 

where yi"x' = Z k ( s  = i -7) .  

This part constitutes the response t,o the decaying oscillations at the rotation 
frequency, typical of the time-dependent Ekman layer. 

(iii) The inertial oscillations, corresponding to the simple poles a t  

This part is given by 

sin nxx(7 eiwt + 7* e-'wt), 

2/2 where 7 = 7 ~ A + i s ) ;  70 = + ~ ~ - ( 1 - & ;  
n x  

(5.25) 

A = t [ ( l - w ) f + ( l + w ) ; ] ,  

B = ; [ ( l - W ) ~ - ( l + W p ] .  

The sum of (5.23)-(5.25) constitutes the complete solution. From here on, we shall 
focus attention on the last part and calculate the Lagrangian mean motion resulting 
from the inertial oscillations. This phenomenon, which is generally associated with 
progressive gravity waves (Stokes drift), is due to the fact that individual fluid 
particles in oscillatory motion travel over finite distances and are therefore 
influenced by spatial variations of the velocity field. As a consequence, the fluid 
particles do not necessarily have to follow closed orbits. If not, there is a Lagrangian 
mean motion which could be detected only by Lagrangian measurements, like 
following dyed fluid. The Lagrangian zonal velocity is given by 

(5.26) 

If the Eulerian velocity components 

6 k  

w 
v,, , = - n d l ( p k  r )  cos nxz Im {7,, , eiwt}, (5.28) 
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FIGURE 5 .  Plots of the time-integrated Lagrangian mean motion versus radius, resulting from 
inertial oscillations. The computations are made from (5.32), using aspect ratios corresponding to 
the experiments. The curves are normalized by the factor 1/3Er.  

are inserted in (5.26) and the time average is taken, we get 

(5.30) 

Thus, the Lagrangian mean zonal flow is independent of the vertical coordinate. In  
order to calculate the total zonal displacement of fluid, decay factors have to be 
included in the exponents in (5.27)-(5.29). For simplicity, we take the approximate 
decay factors due to internal friction (ignoring frictional effects from the boundaries) 

( J n , k  = @((nn)'++',h:). 

Integration of (5.30) yields 

(5.31) 

(5.32) 

Investigation of (5.32) in the limits r + 0 and r + 1 shows that 

m o o  1 

S =  c c s,,,+& asr+O, 
k-1 n=l  

w o o  I 

S =  c c s,,,+& a s r + l .  
k-1 n-1 

Thus S is singular a t  r = 0. Figure 5 shows plots, computed from (5.32), for aspect 
ratios corresponding to the five reported experiments (note the qualitative similarity 
with figure 4). Although the magnitude of S is small (the scale factor is e2Et),  the 
existence ofa  singularity may still give rise to noticeable circulation a t  finite distance 
from the centre. This aspect of inertial oscillations has not (to our knowledge) been 
reported in the literature and we plan to  run a special experimental study of the 
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problem. In addition to  the dynamics discussed in this section, there might be effects 
from the paraboloidal shape. Woods (1977) for exampte, showed that radial focusing 
of inertial oscillations may occur in certain geometries with the result that  small- 
scale modes get strongly amplified in the neighbourhood of the rotation axis. Little 
is known, however, about the inertial spectrum in geometries other than the cylinder 
and the sphere. 

The author gratefully acknowledges the help and encouragement he received from 
Professor Gosta Walin. 
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